The science of our fundraising

It gives me great pleasure to announce that we have accepted $2 million in seed capital led by White Star Capital and Oxford Capital. We are excited to have such a well respected group of investors who believe in the team and our vision along for the ride.

When I first started the process, I took some time to talk to a few founders in my network who had recently been involved in early stage fundraising. While this isn’t my first venture, I wanted to get a sense of what raising a seed from institutional investors in 2016 was like. I gained some great insight but one answer I was unable to pin down was the amount of time and energy a process like this takes. Startups are by their nature small ventures and taking leadership out for a fundraising process takes a material % of the capacity of the organization out of play and is an incredibly distracting exercise. I have seen it stall a business before and was keen to understand the timing and impact around the process in today’s climate so that we could plan appropriately. Hard data here wasn’t easy to come by, individual founders knew it was all consuming and it typically ‘took some time’ but the metrics were subjective. Now every process is unique but a few firm data points can help establish a baseline. Traditionally, any sort of metric across an organic process like a fundraise is pretty hard to get at so there is little information out there. I decided to dog food our own platform and make a Sift for it.

Everyday data sources such as email, messaging platforms, web applications and IoT devices generate vast amounts of data, most of which lacks structure and is difficult to aggregate and summarise. Because of this, it often remains archived without us being able to draw any valuable insight from it. Red Sift allows our users to easily interconnect these disparate sources and join data between them to receive insights or automate workflows. We do this through the use of “Sifts” — smart, open source micro services that run computations on your data securely to deliver information in your dashboard or messaging channels. Sifts can be created by us or the community as our platform allows developers and eventually regular users to create their own Sifts simply and rapidly.

Given that there was little data I could use to predict, I wanted to capture the analytics for the future and keep track of the process through the eyes of our platform. Here is what I created to help me track my time expenditure.

Red Sift for Gmail places analytics alongside your Inbox

Most processes these days leave a trail in your Inbox. Buying a house, organising a major event, finding a job, executing a due diligence; whatever it might be, you are likely using your email account to progress the task and it leaves a trail in your Inbox. Specialist tools exist for the narrowest of market verticals but they don’t apply to mess that is most processes. Red Sift provides first class support for an Inbox as a data source and can embed analytics inside Gmail. It can turn that stack of messages into something that intelligence can be computed upon and insight gathered without having to move or export the data anywhere else. In addition, as it is fully integrated, it will react in real time to updates — no data entry required. All I needed to do was classify the messages I wanted measured. I dropped a label on them and made my Sift select only those communications.

At a high level, I wanted to understand the impact the process was having on our time so we could track, adapt and use the signal to figure out what was working and what we needed to change. Note that I created this representation in the style of the excellent web comic xkcd by Randall Munroe as I am a huge fan and his stuff makes me laugh. As most founders would agree, anything that makes you smile during a fundraise is a win.

Let’s look at each of the metrics I coded up in turn.

Number of words I wrote vs the number I received

Our strategy was fairly traditional, we made our outreach via warm introductions to ensure we had the best shot at an open door. The data seems to hold up, I didn’t waste much time with firing shots into the dark. Most communication related to this process produced a response and the volume of time spent drafting email was balanced.

Associated people (e.g. in cc) who I never heard from

We are all familiar with the sprawl of cc lists that build around business communication. Thankfully, VCs in our sample set do not have that problem to a significant degree. Individuals on a thread are mostly relevant when they are copied in as they tend to respond and engage at some point.

External activity broken down by the day of the week

One interesting behaviour we noticed early was the feeling that Monday was a quieter day than we expected. Looks like Tuesday was a measurably higher traffic day for our prospects. I typically tried to block out Mondays to work on the product given that we saw this pattern emerge early.

The grand summary table breaks it all down. A bit over 3 full days at the keyboard spent reading and writing email spread over 33 weeks and a funnel that started at the top with ~53 prospects to get to our final outcome. My Sift has used a heuristic to estimate the time spend reading and responding to communication though it’s obviously inexact in the current form. While there is an error margin, in the future we can use these analytics to establish a baseline and help us plan future activities.

For the purposes of brevity and in the interests of anonymity, I have kept the details fairly high level. There is a lot more signal in my Inbox and calendar covering phone calls / pitches / coffees and my Sift can dig a lot deeper such as correlating time-to-reply with final outcome and estimating response times. Developers and the curious can look under the hood. You can fork and modify them to suit your own purposes and run them live on your own data.

Rahul Powar, Founder & CEO

Humor-Sans used under the SIL Open Font License, Version 1.1

PUBLISHED BY

Rahul Powar

25 Oct. 2016

SHARE ARTICLE:

Categories

Recent Posts

VIEW ALL
Cybersecurity

Exploring the complexities of cyber insurance with Harpreet Mann

Sean Costigan

In the fourth episode of Resilience Rising, Sean Costigan, Managing Director of Resilience Strategy at Red Sift, delves into the intricacies of cyber insurance with Harpreet Mann, President of Amynta Trade Credit and Political Risk Solutions. Drawing on her extensive experience in insurance and risk management, Harpreet sheds light on the challenges and transformative…

Read more
DORA

Countdown to compliance: Are you ready for the DORA deadline?

Jack Lilley

The European Union’s (EU) Digital Operational Resilience Act (DORA) deadline approaches, with just one week to go before the DORA applies to all financial entities and their ICT service providers on January 17 2025. Sectors affected by the DORA include but are not limited to: Understanding and ensuring compliance with the upcoming legislation need…

Read more
AI

Predictions for 2025: Cybersecurity and the increasing rise of AI

Rahul Powar

2025 is set to be the year where cybersecurity and AI will be defined by the deepening interplay between technology and governance, the integration of AI into everyday business functions, and the reimagining of cybersecurity as a business enabler. Organizations that embrace these trends will gain not only a technological edge but also a…

Read more
News

Winter wins: Red Sift OnDMARC wraps up 2024 as a G2 DMARC…

Francesca Rünger-Field

The season of giving has brought us another reason to celebrate! Red Sift OnDMARC continues its winning streak in G2’s Winter 2025 report, earning Leader status in the DMARC category for another consecutive season. This recognition reflects our strong market presence and the unwavering satisfaction of our customers. Cheers to wrapping up 2024 on…

Read more